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ABSTRACT

A theory of transport coe�cients in weakly compressible turbulence is derived by applying

Yoshizawa's two-scale direct interaction approximation to the compressible equations of

motion linearized about a state of incompressible turbulence. The result is a generalization

of the eddy viscosity representation of incompressible turbulence. In addition to the usual

incompressible eddy viscosity, the calculation generates eddy di�usivities for entropy and

pressure, and an e�ective bulk viscosity acting on the mean ow. The compressible uc-

tuations also generate an e�ective turbulent mean pressure and corrections to the speed of

sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms

containing gradients of incompressible turbulence quantities also appear in the mean ow

equations. The form these terms take is described.
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I. Introduction

This paper derives a gradient transport model for weakly compressible turbulence

which generalizes the eddy viscosity description of incompressible turbulence. The model

is derived by applying Yoshizawa's two-scale direct interaction approximation (TSDIA)1

to the theory of weakly compressible turbulence. In this theory, the compressible �eld

quantities are analyzed by linearization about a state of incompressible turbulence.2;3

The present model can be compared to Yoshizawa's theory,4 the �rst comprehensive

attempt to derive a general transport model for compressible turbulence. Like Yoshizawa's,

the present theory requires the derivation of a direct interaction approximation5 (DIA) for

compressible turbulence. Whereas Yoshizawa's theory allows strong compressibility e�ects,

the restriction in the present work to weak compressibility makes possible a somewhat more

complete treatment of the DIA response functions and leads to more explicit expressions

for the transport coe�cients. In particular, the present theory treats the complete matrix

of response functions, including various coupling terms which produce the wave motions

characteristic of compressible ow.

The DIA for weakly compressible turbulence derived here can be compared to the-

ories proposed by Bertoglio et al.6 Like them, we derive approximate formulas for the

response functions; although a comprehensive DIA theory of compressible turbulence was

formulated by Hartke et al,7 explicit expressions for the DIA �eld descriptors were not

given. Renormalization group methods were applied to strongly compressible turbulence

by Staroselski et al.8 The spectral dynamics of weakly compressible turbulence has also

been modeled using EDQNM by Bertoglio et al6 and by Bataille et al.9

The theory of weakly compressible turbulence has been considered from the TSDIA

viewpoint by Shimomura;10 however, this work had the quite di�erent goal of a more re�ned

treatment of buoyancy e�ects than is possible in the Boussinesq approximation. Another

re�nement of the Boussinesq equations through low Mach number expansions is investi-

gated by Mlaouah et al.11 A distinct theory of weak compressibility has been proposed by

Girimaji.12 In this theory, the compressible part of the velocity �eld is decomposed into

pressure and temperature-dominated components. Any of these theories could have been

used as a starting point for TSDIA instead of the straightforward linearization adopted

here.
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A more traditional approach to modeling compressible turbulence generalizes incom-

pressible models through mass-weighted averaging; a de�nitive survey of this viewpoint

has been given by Huang et al.13 Like Yoshizawa, we attempt instead to derive a model

from a dynamic theory of compressible turbulence. Ristorcelli14 has proposed a pseudo-

sound theory of compressible turbulence for compact ows of engineering interest. In this

weakly compressible theory the length scales of the acoustic uctuations scale as the in-

verse Mach number with respect to the vortical length scales. This allows the neglect of

wave propagation e�ects.

The present model is derived from a three-component decomposition of the com-

pressible ow �eld: after the usual Reynolds decomposition into mean and uctuating

components, the uctuations are further decomposed following Zank and Matthaeus2 and

Erlebacher et al3 into an incompressible �eld and small compressible perturbations. The

compressible �eld is treated by linearization about the incompressible �eld; it follows that

this theory only applies to compressible turbulence at small turbulent Mach number.

As usual, the Reynolds averaging introduces various correlations of uctuating quanti-

ties which require closure; whereas for incompressible turbulence, only the Reynolds stress

arises this way, the increased number of �eld quantities describing compressible turbulence

naturally generates a larger number of such correlations. These unknown correlations are

all closed in terms of gradients of the mean �elds and single point descriptors of the in-

compressible �eld using Yoshizawa's TSDIA formalism.1 Unlike Yoshizawa's theory4 of

compressible turbulence, which introduces the density variance as a new descriptor of

strongly compressible turbulence, the present linearized theory only requires single point

descriptors of incompressible turbulence. These are chosen following the usual two equation

models as turbulence kinetic energy K and dissipation rate ".

As Yoshizawa has demonstrated,1 the TSDIA really generates an in�nite series for the

unknown correlations both in powers of the mean gradients and in the order of di�erentia-

tion of the mean �elds. The present analysis is limited to the terms of lowest order in this

expansion: those which are linear in the mean �elds and which contain spatial derivatives

of order two at most. A large number of potentially interesting nonlinear e�ects, analo-

gous to the normal stress e�ects in simple incompressible shear ow, could be described

by computing the higher order terms in the series.
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In addition to the usual incompressible eddy viscosity, the calculation generates eddy

di�usivities for entropy and pressure and an e�ective bulk viscosity acting on the mean

ow. The compressible uctuations also generate an e�ective turbulent mean pressure and

corrections to the speed of sound. The \renormalized" bulk viscosity, mean pressure, and

sound speed are consequences of coupling among the response equations which correspond

to the generation of sound waves in compressible turbulence. These e�ects would be

suppressed by a \diagonal" approximation which ignores such couplings.

These e�ective properties have the character of enhancements of molecular properties

by turbulent uctuations. But a prediction that appears to be unique to TSDIA is that

terms containing gradients of turbulence quantities also appear in the mean ow equations.

Because of the large number of such terms and their complexity, only a preliminary account

of the e�ect of these terms on single point modeling is given. Explicit evaluation of these

terms is reserved for future work.

It should be stressed that the present model only attempts to close the correlations

which arise from Reynolds averaging of the equations of motion. The e�ects of compress-

ibility on the two-equation model14;15 are not addressed, although we indicate later how

these e�ects could be analyzed within the present setting.

An important question concerns the validity of linearized theories of compressible tur-

bulence at asymptotically large times:16 in the in�nite time limit, the compressible �eld

might build up to amplitude levels su�cient to invalidate a linearized theory. For exam-

ple, Staroselski et al8 argue that equipartition between compressible and incompressible

uctuations is a possible outcome of the long time evolution of compressible turbulence.

But when the compressible �eld is generated entirely from the incompressible �eld, the

weakness of the relevant energy transfer mechanism may permit a range of times, su�-

ciently large for many applications, over which the linearization remains valid. Numerical

simulations of energy transfer in weakly compressible turbulence by Bataille et al17 provide

examples of this possibility.

II. Formulation of the theory of weakly compressible turbulence

The inviscid governing equations are taken in the form

@s

@t
+ u � rs = 0
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@u

@t
+ u � ru+

1

�
rp = 0

@p

@t
+ u � rp+ pr � u = 0 (1)

with dependent variables entropy s, velocity u, and pressure p. Density can be evaluated

from entropy and pressure through the thermodynamic relation

s=CV = log
p

p0
� log

�

�0
(2)

In what follows, s denotes entropy divided by CV to simplify the notation.

The analysis is based on a three-component decomposition of the velocity �eld into

mean quantities, incompressible uctuations, and small compressible perturbations. Ac-

cordingly, �rst introduce the usual Reynolds decomposition of the �elds s;u; p into mean

and uctuations and then further decompose the uctuations into an incompressible �eld

and compressible perturbations following Zank and Matthaeus.2 Thus, the �eld quantities

are written as

s = S + s0

u =U+ u1 + u0

p = P + p1 + p0 (3)

where S;U; P denote the mean entropy,velocity, and pressure and u1; p1 the incompress-

ible velocity and pressure uctuations. Note that the �eldU need not be solenoidal. Write

the density as

� = R+ �0 (4)

The density uctuation �0 can be evaluated by linearizing Eq. (2) as

�0 = c�2(p1 + p0)� �1Rs0 (5)

where the mean speed of sound is de�ned by the thermodynamic relation

c2 = 
P

R

The compressible velocity perturbation u0 need not be irrotational; in fact, the interaction

of the compressible �eld with the base isotropic incompressible �eld u1 generates addi-

tional solenoidal motions. The dynamics of the compressible perturbations s0;u0; p0 will
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be analyzed by linearization about the mean �elds and incompressible uctuations: this

de�nes the theory of weakly compressible turbulence.

The mean equations are obtained by substituting the decomposition Eq. (3) into Eq.

(1), dropping terms which are nonlinear in the compressible quantities, and averaging.

Then

@S

@t
+U � rS = �r� < u1s0 > (6)

R(
@U

@t
+U � rU) +rP = �Rr� < u1u1 + u1u0 > �R < u0 � ru1 >

+
1

Rc2
r <

1

2
p1p1 + p1p0 > �

1


< s0rp1 > (7)

@P

@t
+U � rP + Pr �U = �r� < u1p1 + u1p0 + u0p1 >

+ ( � 1) < u0 � rp1 > (8)

where in Eq. (7), �0 has been eliminated in favor of p1; p0, and s0 using Eq. (5). The

derivation of Eq. (7) requires the expansion of the ratio 1=(R + �0) in powers of �0=R.

Following the usual practice in the theory of compressible turbulence, only the term linear

in �0 has been retained. Computing this series to higher order in �0 would generate a

series in powers of p1=c2. Although linearization does not justify ignoring these terms,

they generate a series in powers of the turbulent Mach number which can reasonably be

truncated at lowest order.

The incompressible �eld satis�es

@u1

@t
+ u1 � ru1 +

1

R
rp1 = �[U � ru1 + u1 � (rU)S ] + < u1 � ru1 > (9)

r � u1 = 0 (10)

Eqs. (9) and (10) require that the incompressible pressure p1 satisfy the Poisson equation

r �
1

R
rp1 = �r � (u1 � ru1)�r � [U � ru1 + u1 � (rU)S+ < u1 � ru1 >]

These equations have been investigated in Yoshizawa's TSDIA analysis of incompressible

turbulence;1 the results of that analysis will be assumed in what follows. The traceless

part of the mean velocity gradient appears in the incompressible momentum equation Eq.

(9); it is de�ned by the decomposition

rU = (rU)S + (rU)C
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in which

(rU)Sij =
@Ui

@xj
�

1

3

@Up

@xp
�ij

(rU)Cij =
1

3

@Up

@xp
�ij

The component (rU)C is added to the compressible momentum equation below.

The derivation of the linearized equations for the compressible uctuations is routine

and leads to

@s0

@t
+ u1 � rs0 +Cs = 0 (11)

@u0

@t
+ u1 � ru0 + u0 � ru1 +

1

R
rp0 �

p0

c2R2
rp1 +

1


Rs0rp1 +Cu = 0 (12)

@p0

@t
+ u1 � rp0 +Rc2r � u0 + u0 � rp1 + p1r � u0 + Cp = �py (13)

where the source term in Eq. (13) is the incompressible quantity

py =
@p1

@t
+ u1 � rp1 (14)

and the terms coupling the uctuating and mean �elds in Eqs. (11)-(13) are

Cs =U � rs0 + u1 � rS + u0 � rS� < u1 � rs0 > (15)

Cu =U � ru0 + u0 � rU�
�0

R2
rP �

�0

R2
rp0 �

1

R2c2
p1rp1 (16)

+ u1 � (rU)C� < u1 � ru0 + u0ru1 �
1

R2
�0rp1 �

1

R2
�0rp0 >

Cp =U � rp1 +U � rp0 + u1 � rP + p1r �U+ u0 � rP (17)

+ p0r �U� < u1 � rp1 + u1 � rp0 + u0 � rp1 + p1r � u0 >

In Eq. (16), the density uctuation must be expressed in terms of entropy and pressure

by Eq. (5).

III. DIA analysis of homogeneous isotropic weakly compressible turbulence

Analytical theories of turbulence such as DIA5 provide a systematic procedure for

evaluating the correlations generated by Reynolds averaging. Although DIA can be for-

mulated even for arbitrarily inhomogeneous and anisotropic turbulence,18 the resulting
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theory proves to be intractably complex. TSDIA provides a useful approximation. Heuris-

tically, it computes perturbatively about an isotropic and locally homogeneous state of

turbulence which is described to lowest order by DIA. The e�ects of coupling to mean

�elds are evaluated by a perturbation series in a scale ratio parameter. This perturbative

treatment restricts TSDIA to weakly inhomogeneous and anisotropic turbulence; however,

since universal single-point modeling of turbulence with arbitrarily strong inhomogene-

ity and anisotropy is impossible in principle, this restriction does not unduly limit the

applicability of TSDIA to turbulence modeling.

Analytically, the local homogeneity of the lowest order TSDIA �eld means that mo-

ments of this �eld at each point are evaluated using DIA results for homogeneous isotropic

turbulence generalized for weak inhomogeneity by allowing all single point descriptors to

vary slowly with space and time. This approximation, justi�ed in the formal development

of TSDIA,1 occurs in many physical theories, for example in thermodynamics, when a

thermodynamic system is taken to have a temporally or spatially variable temperature.

In the present problem, Eqs. (11)-(13) describe a coupled system of passive �elds. The

application of DIA to this problem is not straightforward because the coupling between

the compressible and incompressible �elds cannot be analyzed exactly. Approximations

are required which are both analytically tractable and preserve the important physical

properties of the problem. Further discussion appears in Appendix I.

The simplest suitable approximation is obtained by treating both the mean �eld cou-

plings and the terms which depend on the incompressible pressure as perturbations. Thus,

write Eqs. (11)-(13) as

@s

@t
+ u1 � rs = �Cs (18)

@u

@t
+ u1 � ru+ u � ru1 +

1

�0
rp = (�=�20)rp

1 �Cu (19)

@p

@t
+ u1 � rp+ �0c

2
0r � u = �py � (u � rp1 + p1r � u)� Cp (20)

In Eqs. (18)-(20), the primes on compressible �eld quantities have been dropped. Since we

are treating the homogeneous problem, R = �0 and c = c0 are assumed constant in Eqs.

(18)-(20). Following the perturbation scheme outlined in Appendix I, we must evaluate
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the response matrix of the homogeneous system

@s

@t
+ u1 � rs = 0 (21)

@u

@t
+ u1 � ru+ u � ru1 +

1

�0
rp = 0 (22)

@p

@t
+ u1 � rp+ �0c

2

0r � u = 0 (23)

and treat all terms on the right side of Eqs. (18)-(20) perturbatively. The corresponding

homogeneous form of the incompressible equations are

@u1

@t
+ u1 � ru1 +

1

�0
rp1 = 0

r � u1 = 0

and as usual, these equations imply that the pressure satis�es

r2p1 = ��0r � (u1 � ru1)

Note that the s equation Eq. (21) decouples from the others: s is a passive scalar

advected by the incompressible velocity �eld u1. The response matrix therefore has the

structure

G =

2
4G

ss 0 0

0 Guu
ij G

up
j

0 G
pu
i Gpp

3
5 (24)

The elements of the response matrix are de�ned as5

Gss =< �s=�fs >

Guu
ij =< �ui=�f

u
j >

G
up
i =< �ui=�f

p >

G
pu
j =< �p=�fuj >

Gpp =< �p=�fp >

where the quantities fs; fuj ; f
p are small perturbations added respectively to Eqs. (21)-

(23).

The spatial homogeneity of the �elds justi�es Fourier transformation in space. Since

s is a passive scalar, its response function Gss satis�es the standard DIA equation19

@Gss

@t
(k; t; r) +

Z t

r

ds �ss(k; t; s)Gss(k; s; r) = �(t � r) (25)
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where the damping factor �ss in Eq. (25) is evaluated as

�ss(k; t; r) = kmkn

Z
k=p+q

dpdq Gss(p; t; r)Qmn(q; t; r) (26)

In Eq. (26), Qmn is the incompressible two time correlation function

< u1m (k; t)u1n (k0; r) > = Qmn(k; t; r)�(k + k0)

The � function forcing in Eq. (25) summarizes the initial and causality conditions for Gss

which are

Gss(k; t; r) = 0 for t < r

Gss(k; t; t) = 1

The spatial Fourier transforms of Eqs. (22) and (23) are

@ui

@t
(k; t) +

1

�0
ikip(k; t) +

Z
k=p+q

dpdq �1imn(k;p;q)u
1

m (p; t)un(q; t) = 0

@p

@t
(k; t) + i�0c

2kiui(k; t) +

Z
k=p+q

dpdq �2n(k;p;q)u
1

n (p; t)p(q; t) = 0 (27)

The couplings between the compressible and incompressible �elds in Eq. (27) are de�ned

by
�1imn(k;p;q) = i(qm�in + pn�im)

�2n(k;p;q) = ikn

The DIA equations for the response functions are easily shown to be

_Guu
ij +

1

�0
ikiG

pu
j + �

up
i �G

pu
j + �uuis �Guu

sj = �(t� r)

_G
up
i +

1

�0
ikiG

pp + �
up
i �Gpp + �uuis �G

up
s = 0

_G
pu
i + i�0c

2kjG
uu
ji + �

pu
j �Guu

ji + �pp �G
pu
i = 0

_Gpp + i�0c
2kjG

up
j + �

pu
j �G

up
j + �pp �Gpp = �(t� r) (28)

where * denotes time integration as in Eq. (25) and the damping functions � are given by

�uuij (k; t; r) = �

Z
k=p+q

dpdq �1imn(k;p;q)G
uu
np(q; t; r)�

1
prj (q;�p;k)Qmr(p; t; r)

�
up
i (k; t; r) = �

Z
k=p+q

dpdq �1imn(k;p;q)G
up
n (q; t; r)�2r (q;�p;k)Qmr (p; t; r)

�
pu
j (k; t; r) = �

Z
k=p+q

dpdq �2m(k;p;q)G
pu
n (q; t; r)�1nrj (q;�p;k)Qrm(p; t; r)

�pp(k; t; r) = �

Z
k=p+q

dpdq �2m(k;p;q)G
pp(q; t; r)�2n(q;�p;k)Qmn(p; t; r) (29)
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Now introduce the normalized Helmholtz decomposition of the �eld ui:

ui(k; t) = wi(k; t) + ikik
�1�(k; t)

The isotropy of the lowest order uctuating �elds implies that the damping and response

functions must have the form

�uuij (k; t; r) = �ww(k; t; r)Pij (k) + ���(k; t; r)P �ij (k)

�
up
i (k; t; r) = ��p(k; t; r)ikik

�1

�
pu
j (k; t; r) = ��p�(k; t; r)ikjk

�1 (30)

and

Guu
ij (k; t; s) = Gww(k; t; s)Pij (k) +G��(k; t; s)P �ij (k)

G
up
i (k; t; s) = G�p(k; t; s)ikik

�1

G
pu
j (k; t; s) = �Gp�(k; t; s)ikjk

�1 (31)

In Eqs. (30) and (31), Pij and P
�

ij are the transverse and longitudinal projection operators

Pij(k) = �ij � kikjk
�2

P �ij(k) = kikjk
�2

Substitute Eqs. (30) and (31) into the governing equations Eq. (28) and separate

transverse and longitudinal components. The result is that Gww decouples from the rest

of the system and satis�es, in the abridged notation of Eq. (28),

_Gww + �ww �Gww = �(t� r) (32)

while the remaining response functions satisfy the system

��
1 0

0 1

�
@

@t
+

�
0 k��10

��0c
2k 0

�� �
G�� G�p

Gp� Gpp

�

+

�
��� ��p

�p� �pp

�
�

�
G�� G�p

Gp� Gpp

�
= �(t� r)

�
1 0

0 1

�
(33)
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The solution of Eq. (33) for the response equations is discussed later. For now, the response

matrix with the simpli�ed structure of Eq. (24) is used to derive formal expressions for

the transport coe�cients.

IV. TSDIA analysis of inhomogeneous weakly compressible turbulence

TSDIA introduces, in addition to the usual Reynolds averaging, a two-scale decom-

position

@

@xi
=

@

@x0i
+

@

@Xi

@

@t
=

@

@t0
+

@

@T
(34)

where x0 and t0 describe small turbulent scales of motion and X and T describe large scale

ow features including inhomogeneity and anisotropy. It is natural to assume that the mean

quantities depend only on the slow variables X;T . Substitution of the scale decomposition

Eq. (34) in the mean equations Eqs. (6)-(8) therefore leaves these equations unaltered.

Corresponding to Eq. (34), write the compressible �eld quantities as

s = s(x0;X; t0; T )

ui = ui(x
0;X; t0; T )

p = p(x0;X; t0; T )

and apply the scale decompositions of Eq. (34) to the equations for uctuations Eqs. (18)-

(20). With these substitutions, dropping primes in the small scale variables, the uctuation

equations take the form

@s

@t
+U � rxs+ u1 � rxs = �Fs (35)

@u

@t
+U � rxu+ u1 � rxu+ u � rxu

1 +
1

R
rxp = �Fu (36)

@p

@t
+U � rxp+ u1 � rxp+Rc2rx � u = �Fp (37)

where

Fs =
� @s
@T

+U � rXs
�
+ u1 � rXS + u � rXS (38)
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Fu =
� @u
@T

+U � rXu
�
+ u1 � rXu+ u � rXu

1 +
1

R
rXp

�
�

R2
rxp

1 �
�

R2
rXp

1 + u � rXU�
�

R2
rXP �

�

R2
rXp�

�

R2
rxp

+ u1 � (rXU)
C (39)

Fp =
� @p
@T

+U � rXp
�
+ u1 � rXp+Rc2rX � u

+ u � rXp
1 + u � rxp

1 + p1rX � u+ p1rx � u

+
�@p1
@T

+U � rXp
1
�
+U � rxp

1 + u1 � rXP + p1rX � U

+ prX � U + u � rXP + u1 � rXp
1 +

�@p1
@t

+ u1 � rxp
1
�

(40)

In Eqs. (35)-(40), the variable mean density R and sound speed c appear because we now

consider weakly inhomogeneous �elds. The averages in Eqs. (15)-(17), which maintain

the property that the uctuation equations have zero mean, have been dropped in Eqs.

(38)-(40) because they do not contribute to the formation of moments at the level of

approximation to be introduced later.

Since the lowest order �eld is locally homogeneous, a spatial Fourier transform is again

appropriate. The spatial part of the decomposition Eq. (34) becomes

@

@xi
= iki +

@

@Xi

With these assumptions, the uctuating �elds are expressed in terms of the corresponding

forces and response functions as

s(k;X; t; T ) = �

Z t

0

dr Gss(k;X; t; r; T )Fs(k;X; r; T ) (41)

ui(k;X; t; T ) = �

Z t

0

dr [Guu
ij (k;X; t; r; T )F

u
j (k;X; r; T )

+G
up
i (k;X; t; r; T )Fp(k;X; r; T )] (42)

p(k;X; t; T ) = �

Z t

0

dr [Gpp(k;X; t; r; T )Fp(k;X; r; T )

+G
pu
j (k;X; t; r; T )Fu

j (k;X; r; T )] (43)

The possibility of writing explicit expressions like Eqs. (41)-(43) is an important advantage

of the DIA formalism. But it must be emphasized that these expressions can only be used

to form moments containing s; ui, and p: DIA provides statistical formulas for the �eld

quantities, not pointwise solutions of the equations of motion.
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Analytically, local homogeneity means that the various response and correlation func-

tions G(k;X; t; r; T ) and Q(k;X; t; r; T ) are evaluated as the corresponding homogeneous

quantities G(k; t; r) and Q(k; t; r) but with all single point moments which characterize

the �elds treated as functions of X;T . For example, consider the typical forms1 for the

response and correlation functions of isotropic incompressible turbulence,

G(k; t; r) = exp[��(k)(t� r)]H(t � r)

Q(k; t; r) =
1

4�
CK"

2=3k�11=3exp[��(k) j t� r j]

�(k) = CD"
1=3k2=3

k � k0 (44)

where H is the unit step function. These expressions are generalized to weakly inhomoge-

neous incompressible turbulence by letting " and k0 depend on X and T .

With these results, it is straightforward to evaluate the moments needed to close the

mean ow equations. In evaluating the moments, the following truncations of the series

which the TSDIA generates are adopted:

(a) only modeled terms which are at most linear in the mean gradients are retained,

(b) only modeled terms with at most second order derivatives with respect to X;T are

retained,

(c) modeled terms derived by repeated convolution with the compressible response func-

tions are dropped.

Whereas (a) and (b) follow from the formal development of TSDIA as a perturbation

expansion, (c) is an additional approximation.

In the following, dependence on X;T will be understood but not written explicitly.

A. Entropy velocity correlation

The entropy velocity correlation appears in the mean entropy equation Eq. (6). Write

this correlation as the integral

< u1i s > =

Z
dk < u1i (�k; t)s(k; t) > (45)

13



Substitute the expression for s in terms of its response function Eq. (41) in Eq. (45) to

obtain

� < u1i s > =

Z
dk

Z t

0

dr Gss(k; t; r)�

�
< u1i (�k; t)

@s

@T
(k; r) > (46a)

+ < u1i (�k; t)Up
@s

@Xp

(k; r) > (46b)

+ < u1i (�k; t)u1j (k; r) >
@S

@Xj
(46c)

+ < u1i (�k; t)uj(k; r) >
@S

@Xj

	
(46d)

The formation of nonzero correlations between u1 and compressible �elds in lines

(46a); (46b); (46d) requires an additional time integration over the response functions; the

approximation (c) above suppresses these terms. It can be noted that some of these terms

will also generate products of gradients and gradients of higher order which are also ex-

cluded by (a) and (b).

Term (46c) contributes a gradient transport expression

� < u1i (�k; t)s(k; t) > =

Z
dk

Z t

0

dr Gss(k; t; r)Qij (k; t; r)
@S

@Xj
(47)

To lowest order of TSDIA, the integral in Eq. (47) is evaluated by substituting isotropic

quasi-homogeneous forms for Gss and Qij :

Qij(k; t; r) = Q(k; t; r)Pij (k)

Gss(k; t; r) = Gss(k; t; r) (48)

To construct a single point model, it is assumed that the fast time scale dependence

is stationary. Therefore, the response and correlation functions depend only the time

di�erence � = t� r:

Q(k; t; r) = Q(k; t � r) = Q(k; � )

Gss(k; t; r) = Gss(k; t� r) = Gss(k; � ) (49)

14



Furthermore, since the turbulent time scales are much shorter than those of the mean

motion, the long time limit t!1 is taken. Substituting Eqs. (48) and (49) in Eq. (47)

and taking the long time limit results in the gradient transport model

� < u1i s > = �ss
@S

@Xi

(50)

where the transport coe�cient is de�ned by

�ss =
2

3

Z
1

0

4�k2dk

Z
1

0

d� Gss(k; � )Q(k; � ) (51)

The factor of 2/3 arises from angular integration of the transverse projection operator

Pij . This type of expression for a transport coe�cient is familiar from Yoshizawa's TSDIA

calculations.1;4

B. Velocity pressure correlations

Four such correlations appear in Eq. (8) for the mean pressure: < u1p1 >,

< u1p >, < up1 >, and < u � rp1 >.

1. The correlation < u1p1 >

The incompressible correlation < u1p1 > has been analyzed by Shimomura20 who

�nds that it is a di�usion of turbulence quantities. In terms of single point quantities, the

integrals become

� < p1u1i > =
K2

"

�
C1

@K

@Xi
+ C2

K

"

@"

@Xi

�
(52)

Terms of this type will also appear in the closure of correlations containing compressible

�elds and will be discussed below.

2. The correlation < u1p >

Write the second velocity pressure correlation as the integral

� < u1i p > = �

Z
dk < u1i (�k; t)p(k; t) >

=

Z
dk

Z t

0

dr
�
Gpp(k; t; r) < u1i (�k; t)Fp(k; r) >

+G
pu
j (k; t; r) < u1i (�k; t)Fu

j (k; r) >
	

(53)
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Closure of this moment requires that the forces from Eqs. (38)-(40) be substituted in Eq.

(53). The approximation in which only one time convolution with a compressible response

function is allowed shows, as for entropy correlations, that we need only consider terms

containing correlations of the incompressible �eld with itself; the result of evaluating only

such terms appears in Appendix II, Sect. A.

Further analysis shows that some of these terms vanish. A list of the nonvanishing

terms also appears in Appendix II, Sect. A. Among these terms, some have the form

familiar from eddy viscosity modeling: they are (1) proportional to gradients of mean �elds,

and (2) nonvanishing in regions of constant turbulence properties. Property (2) gives these

terms the character of enhancements of molecular properties due to turbulent uctuations;

the molecular properties themselves are the result instead of thermal uctuations. The

transport coe�cient �ss of Eq. (51) is an example. Such terms will be denoted by the

subscript M ; only these terms will be evaluated in detail in this paper.

But TSDIA also generates a second set of terms which depend on gradients of tur-

bulence quantities. Shimomura's closure of the pressure velocity correlation Eq. (52) is

of this type. Unlike the terms just described, these terms vanish when the turbulence

properties are constant. Since turbulence properties are rarely constant in practice, it is

an important and nontrivial prediction of TSDIA that such corrections to the transport

model exist. Because of the large number of such terms and the lengthy analysis required

to evaluate many of them, we defer a complete analysis of these terms to later work. In

this paper, such terms will be labelled with the subscript T . A preliminary description of

them appears in Appendix III.

With these conventions,

< u1p > = < u1p >M + < u1p >T

It is shown in Appendix II, Sect. A that

� < u1i p >M= �
pp
1

@P

@Xi
(54)

where, repeating the argument which led to Eq. (51), the transport coe�cient �
pp
1 is given

by

�
pp
1 =

2

3

Z
1

0

4�k2dk

Z
1

0

d� Gpp(k; � )Q(k; � ) (55)
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3. The correlation < up1 >

Write the third velocity pressure correlation as the integral

� < uip
1 > = �

Z
dk < p1(�k; t)ui(k; t) >

=

Z
dk

Z t

0

dr fG
up
i (k; t; r) < p1(�k; t)Fp(k; r) >

+Guu
ij (k; t; r) < p1(�k; t)Fu

j (k; r) >g (56)

The terms generated by substituting the forces of Eqs. (38)-(40) in Eq. (56) are listed in

Appendix II, Sect. B. The result has the form

< up1 > = < up1 >M + < up1 >T

where the mean ow dependent term is

� < uip
1 >M = ��

pp
2

@P

@Xi
(57)

and the transport coe�cient �
pp
2 is given by

�
pp
2

=
1

R2c2

Z
1

0

4�k2 dk

Z
1

0

d�f
2

3
Gww(k; � ) +

1

3
G��(k; � )gQp(k; � ) (58)

In Eq. (58), we have assumed, corresponding to Eq. (49) for the two-time velocity corre-

lation function, an isotropic stationary form for the two-time pressure correlation

< p1(k; t)p1(k; r) > = Qp(k; � )�(k+ k0)

Whereas the single time pressure correlation function is described by Batchelor's analysis,21

calculation of the two-time pressure correlation remains an open problem.

Eq. (57) has an anti-di�usive character, but the complete transport coe�cient is

�pp = �
pp
1 ��

pp
2 where �

pp
1 is evaluated in Eq. (55); it will be shown later that the negative

contribution is smaller in magnitude than the positive contribution by a factor of the order

of the turbulent Mach number squared.
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4. The correlation < u � rp1 >

The fourth pressure velocity correlation is written as an integral

� < u � rp1 > =

Z
dk

Z t

0

dr

f < G
up
i (k; t; r)Fp(k; r)(�iki +

@

@Xi
)p1(�k; t) >

+ < Guu
ij (k; t; r)F

u
j (k; r)(�ikj +

@

@Xj
)p1(�k; t) >g

It is shown in Appendix II, Sect. C that the only mean ow dependent term is

� < u � rxp
1 >M = �

@Um

@Xm
(59)

where the e�ective pressure � is given by

� = 

Z
1

0

4�k2dk

Z
1

0

d� kG�p(k; � )Qp(k; � ) (60)

C. Velocity-velocity correlations

The velocity-velocity correlations arise in the mean momentum equation Eq. (7).

There are three such correlations: < u1u1 >, < u1u >, and < u � ru1 >

1. The correlation < u1u1 >

The incompressible correlation < u1u1 > has been extensively investigated by

Yoshizawa.1 At the level of approximation evaluated here, the result of the TSDIA analysis

is the usual linear eddy viscosity representation

� < u1i u
1

j > = �
2

3
K�ij + �(Sij �

1

3
Skk�ij) (61)

where Sij is the strain rate

Sij =
@Ui

@Xj
+

@Uj

@Xj

and the incompressible eddy viscosity is the integral1

� =
4

15

Z
1

0

4�k2dk

Z
1

0

d� Q(k; � )G(k; � ) (62)

where G is the incompressible velocity response function.
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2. The correlation < u1u >

The second correlation is written as the integral

� < u1i uj > = �

Z
dk < u1i (�k; t)uj(k; t) >

=

Z
dk

Z t

0

dr fGuu
jm(k; t; r) < u1i (�k; t)Fu

m(k; r) >

+G
up
j (k; t; r) < u1i (�k; t)Fp(k; r) >g

Reference to Appendix II Sect. D shows that there is only one mean ow dependent term,

which can be described as a renormalized bulk viscosity

� < u1i uj >M = �uu1
@Um

@Xm
�ij (63)

where the transport coe�cient is given by

�uu1 =
1

3

Z
1

0

4�k2dk

Z
1

0

d�
2

3
Gww(k; � )Q(k; � ) (64)

3. The correlation < u � ru1 >

This correlation is written as the integral

� < (u � ru1)i > = �

Z
dk < uj(k; t)(�ikj +

@

@Xj

)u1i (�k; t) >

=

Z
dk

Z t

0

dr fGuu
jm(k; t; r) < Fu

m(k; r)(�ikj +
@

@Xj
)u1i (�k; t) >

+G
up
j (k; t; r) < Fp(k; r)(�ikj +

@

@Xj
)u1i (�k; t) >g

It is shown in Appendix II, Sect. E that the gradient transport term is

� < (u � ru1)i >M =
1

R̂

@P

@Xi

(65)

where the coe�cient R̂ is de�ned by

1

R̂
=

Z
1

0

4�k2dk

Z
1

0

d� kG�p(k; � )Q(k; � ) (66)

It will be shown later that R̂ is related to an e�ective or renormalized speed of sound waves

propagating in the mean ow. This e�ect has been predicted by Chandrasekhar22 and by

Staroselski et al.8
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D. Pressure density correlation

There are three terms: < p1p1 >, < pp1 > and < srp1 >.

1. The correlation < p1p1 >

The incompressible pressure correlation< p1p1 > is the subject of Batchelor's classic

analysis21 which gives

< p1p1 > = CPK
2 (67)

where the constant CP can be evaluated theoretically or from measured data. This result

also holds in the lowest order of TSDIA.

2. The correlation < pp1 >

For this correlation,

� < p1p > = �

Z
dk < p1(�k; t)p(k; t) >

=

Z
dk

Z t

0

drfGpp(k; t; r) < p1(�k; t)Fp(k; r) >

+G
pu
j (k; t; r) < p1(�k; t)Fu

j (k; r) >g

In Appendix II Sect. F, it is shown that the mean ow dependent term is

� < pp1 >M = R2c2�uu2
@Up

@Xp
(68)

where the e�ective bulk viscosity is de�ned by

R2c2�uu2 = 

Z
4�k2dk

Z
1

0

d� Gpp(k; � )Qp(k; � ) (69)

Note �nally that since there is no pressure source in Fs, the correlation < sp1 >

vanishes to this order.

Introducing only the mean ow dependent terms, Eqs. (50), (54), (57), (59), (61), (63),

(65), and (68) computed by TSDIA into Eqs. (6)-(8), we obtain the gradient transport

model for weakly compressible turbulence,

@S

@t
+U � rS = r � (�ssrS) (70)

@U

@t
+U � rU+

� 1
R
�

1

R̂

�
rP = r � f�

2

3
KI+ �[rU+ (rU)T ]Sg+r(�uur �U)(71)

@P

@t
+U � rP + ( � ̂)Pr �U = r � (�pprP ) (72)
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The gradients of turbulence quantities generated by TSDIA can of course be added as well.

A preliminary qualitative description of these terms and a discussion of the form of the

resulting model appears in Appendix III.

The transport coe�cients in Eqs. (70)-(72) are found from Eqs. (51), (55), (58), (60),

(62), (64), (66), and (69) above and are summarized here for convenient reference as

� =
4

15

Z
1

0

4�k2dk

Z
1

0

d� G(k; � )Q(k; � ) (73)

�ss =
2

3

Z
1

0

4�k2dk

Z
1

0

d� Gss(k; � )Q(k; � ) (74)

�pp =
2

3

Z
1

0

4�k2dk

Z
1

0

d�Gpp(k; � )Q(k; � )

�
1

c2

Z
1

0

4�k2 dk

Z
1

0

d�f
2

3
Gww(k; � ) +

1

3
G��(k; � )gQp(k; � ) (75)

̂ = ( � 1)�=P (76)

� = 

Z
1

0

4�k2dk

Z
1

0

d� kG�p(k; � )Qp(k; � ) (77)

�uu =
1

3

Z
1

0

4�k2dk

Z
1

0

d�
2

3
Gww(k; � )Q(k; � ) (78)

�


R2c2

Z
1

0

4�k2dk

Z
1

0

d� Gpp(k; � )Qp(k; � )

1

R̂
=

Z
1

0

4�k2dk

Z
1

0

d� kG�p(k; � )Q(k; � ) (79)

The eddy viscosity � and eddy di�usivity �ss are transport terms of the type familiar

from studies of incompressible turbulence. The term �uu is an e�ective bulk viscosity

generated by the compressible uctuations. The modi�ed pressure � has been introduced

into the transport model Eq. (71) through the modi�ed speci�c heat ratio ̂ de�ned by

Eq. (76). The turbulent uctuations therefore modify not only the viscosities seen by the

mean ow, but also the e�ective . Of course, the thermodynamic speci�c heat ratio is

unchanged. The TSDIA expressions for � demonstrate that this modi�cation of  is a

long time e�ect: at short times, � � t2, hence ̂ �  +O(t2).

To clarify the role of the R̂ term, note that if the mean �eld is treated as an ensemble

mean, then it can contain non-random sound waves. The propagation speed of these waves

can be found by linearizing the mean ow equations about a constant state, setting

P = P0 + P 0
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U = U0 +U0

R = R0 +R0

where P0 and R0 satisfy the thermodynamic relation c0 = (P0=R0)
1=2 where c0 is the

sound speed at constant pressure P0 and density R0. The standard derivation shows that

sound waves propagate in the mean �eld with speed

C2 = [P0 � ( � 1)�][
1

R0

�
1

R̂
] = c20[1� ( � 1)

�

R0c2
][1�

R0

R̂
] (80)

By evaluating the terms � and R̂ explicitly later, it will be shown that Eq. (80) corresponds

to an increase in the e�ective speed of sound in the mean ow. An argument for the en-

hancement of the speed of sound by compressible uctuations is given by Chandrasekhar;22

Staroselski et al8 discuss this e�ect in the case of strong compressibility.

V. Evaluation of the transport coe�cients

Explicit expressions for the response functions are needed in order to evaluate Eqs.

(73)-(79) for the transport coe�cients. In TSDIA calculations1 for incompressible turbu-

lence, the required expressions are given the Kolmogorov inertial range forms Eq. (44). In

the present case, it is necessary to solve Eqs. (28) for the compressible response functions.

The solution of these equations is di�cult because the damping factors � of Eq. (29)

depend on the response functions themselves. Although these equations are already the

result of several approximations, the desirability of analytical expressions for the transport

coe�cients justi�es further approximations.

First, it will be convenient to replace the damping by Markovian damping by setting

�(k; t; r) = �(k)�(t� r)

For time stationarity, appropriate to the lowest order TSDIA �eld,

�(k) =

Z
1

0

d� �(k; � ) (81)

where � = t� r denotes time di�erence. Equivalently, in frequency space

�(k̂) = �(k; 0) = �(k)
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This Markovianization is familiar in statistical physics23 and is implicit in all turbulence

modeling. It essentially states that turbulent processes occur much faster than mean ow

processes. When this assumption is not valid, universal single time turbulence modeling is

impossible in principle. Further discussion can be found in the recent work of Yoshizawa24

and Woodru�.25 We note that the uctuation-dissipation relation which connects the two-

time correlation and the response function in Eq. (44) is justi�ed for Markovianized

theories.25

The time stationary form of the response equations Eq. (33) which includes the initial

conditions is

��
�i! k=�0

��0c
2k �i!

�
+

�
��� ��p

�p� �pp

�� �
G�� G�p

Gp� Gpp

�
=

�
1 0

0 1

�
(82)

The Markovianized damping factors Eq. (29) with Eq. (81) can be rewritten as

�ww(k) = �
1

2
Pij(k)

Z
1

0

d�

Z
k=p+q

dpdq �1imn(k;p;q)G
ww(q; � )�

Pnp(q)�
1

prj (q;�p;k)Qmr (p; � )

�
1

2
Pij(k)

Z
1

0

d�

Z
k=p+q

dpdq �1imn(k;p;q)G
��(q; � )�

P �np(q)�
1

prj (q;�p;k)Qmr (p; � )

���(k) = �P �ij(k)

Z
1

0

d�

Z
k=p+q

dpdq �1imn(k;p;q)G
ww(q; � )�

Pnp(q)�
1
prj (q;�p;k)Qmr (p; � )

� P �ij(k)

Z
1

0

d�

Z
k=p+q

dpdq �1imn(k;p;q)G
��(q; � )�

P �np(q)�
1

prj (q;�p;k)Qmr (p; � )

��p(k) = ikik
�1

Z
1

0

d�

Z
k=p+q

dpdq �1imn(k;p;q)G
up
n (q; � )�2r(q;�p;k)Qmr (p; � )

�p�(k; � ) = �ikjk
�1

Z
1

0

d�

Z
k=p+q

dpdq �2m(k;p;q)G
pu
n (q; � )�1nrj (q;�p;k)Qrm(p; � )

�pp(k; � ) = �

Z
k=p+q

dpdq �2m(k;p;q)G
pp(q; � )�2n(q;�p;k)Qmn(p; � ) (83)

The Markovianized system Eq. (82) for the response functions is solved approximately

by perturbing about purely incompressible damping. Note �rst that Eq. (32) for Gww
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reduces to the equation for the response function of a passive vector �eld if time integrals

containing G�� are ignored in comparison to time integrals containing Gww in the integral

for �ww in Eq. (83). The self-consistency of this approximation will be demonstrated later:

it will be shown that a consequence of this approximation is that time integrals in G�� are

of order c�2 times time integrals in Gww. So approximate Gww by the response function

of a passive vector �eld

Gww(k; t; s) = exp[��ww(k)(t� s)]H(t � s) (84)

where the damping factor �ww is related to the incompressible damping function � through

�ww(k) = �w�(k)

�(k) = CD"
1=3k2=3 (85)

In Eq. (85), �w is the inverse Prandtl number for convection of w. This quantity can

be evaluated theoretically following the calculation of the Prandtl number for passive

�elds.26;27 Eqs. (83) show that the integrals for the damping factors ��p; �p�; �pp all

contain the corresponding response functions G�p; Gp�; Gpp. Only the integral for ��� has

a contribution which depends on Gww. Assume further that time integrals which contain

the response functions G�p; Gp�; Gpp are small compared to time integrals which contain

Gww. Then set as a �rst approximation

���(k) = ���(k)

��p(k) = �p�(k) = �pp(k) = 0

where �� is another inverse Prandtl number which can be computed by evaluating the

integrals in Eq. (83). Like Eq. (84), it will be shown subsequently that this approximation

is self consistent: by computing response functions and corrected damping factors, we will

�nd that ��p; �p�; �pp are of the order c�1 times ���. With this initial approximation, the

solution of Eq. (82) is

G�p(k̂) =
���10 k

�!2 + c2k2 � i!���(k)

Gpp(k̂) =
�i! + ���(k)

�!2 + c2k2 � i!���(k)

G��(k̂) =
�i!

�!2 + c2k2 � i!���(k)

Gp�(k̂) =
�0c

2k

�!2 + c2k2 � i!���(k)
(86)
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The corresponding time domain expressions for the response functions are

G�p(k; � ) = �
k

�0S
exp(����(k)�=2)sin(S� )H(� )

Gp�(k; � ) = �0
c2k

S
exp(����(k)�=2)sin(S� )H(� )

Gpp(k; � ) = exp(����(k)�=2)cos(S� )H(� )

+
���(k)

2S
exp (����(k)�=2) sin(S� )H(� )

G��(k; � ) = exp(����(k)�=2)cos(S� )H(� )

�
���(k)

2S
exp(����(k)�=2)sin(S� )H(� ) (87)

where

S = fc2k2 �
1

4
�2��(k)

2g1=2 (88)

This approximation can be improved by substituting the response functions of Eq. (87) into

the formulas Eq. (83) for the damping factors. The corrected values of ��p; �p�; �pp contain

terms which oscillate rapidly with frequency ck; time integrals of these quantities will

consequently be of order c�1. Consequently, the corrected ��p; �p�; �pp are of the order c�1

times ���. By solving Eq. (82) for the response functions with this second approximation

for the �'s, a second approximation to the response matrix is generated. This iteration

generates a sequence of approximate solutions to Eq. (82) containing increasingly high

order powers of the time scale ratio �(k)=ck. The approximation Eqs. (86)-(87) is the

approximation of lowest order. This approximation has also been stated by Bertoglio et

al.6

With these approximations, it is possible to evaluate both the transport coe�cients

of Eqs. (73)-(79) and the correlations of compressible �eld quantities which enter the

two-equation model for weakly compressible turbulence. These correlations, such as the

pressure-dilatation and dilatational dissipation, are believed15 to be crucial to explaining

compressibility e�ects on mixing layer growth. To evaluate them, it is necessary to solve

Eqs. (18)-(20), with all mean �eld contributions dropped, to express the compressible

�elds as integrals of the response functions of Eq. (86) and the incompressible source term

py of Eq. (14). The result will express these compressible correlations in terms of the

two-time correlation

Q
y
ij (k; t; r)�(k + k0) = < py(k; t)py(k0; r) >

25



Although this program is completely routine, Qy is a sixth order correlation of velocity

components, therefore explicit evaluation of the required correlations will be quite lengthy.

This part of the model development is left to subsequent work.

To evaluate the transport coe�cients, we apply the inertial range formula Eq. (44)

with the single time correlation function given by the cuto� Kolmogorov spectrum

E(k) = Q(k)=4�k2 =

�
CK"

2=3k�5=3 if k0 � k � kd
0 if k � k0 or k � kd

(89)

In Eq. (89), kd is proportional to the Kolmogorov scale; the convergence of all integrals

in this theory as kd !1 implies that we can set kd =1 and ignore its �nite value. The

large scale cuto� k0 is de�ned in terms of the kinetic energy of turbulence K through

K =
3

2
CK"

2=3k
�2=3
0

We take also

Gss(k; � ) = exp[���(k)� ]H(� ) (90)

where � is the inverse Prandtl number for a passive scalar.27 Pending a more complete

investigation, we postulate for the two time pressure correlation

Qp(k; � ) =
1

4�k2
Ep(k)exp[��P�(k) j � j] (91)

where the single time pressure spectrum is given by Batchelor's well-known relation

Ep(k) = CB�
2

0"
4=3k�7=3 (92)

The spectrum constant CB and Prandtl number 1=�P are evaluated theoretically or from

data. In evaluating integrals dependent on the term S of Eq. (88), we will make the

leading order approximation

S � ck

which is consistent with the assumption of small turbulent Mach number. Given these

approximations, it is easy to evaluate the transport coe�cients in terms of single point

quantities.
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The coe�cient �ss of Eq. (74) is evaluated as

�ss =
2

3

Z
1

0

dk

Z
1

0

d� Gss(k; � )E(k)exp(��� )

=
2

3

1

�+ 1

Z
1

0

dk
E(k)

�(k)

=
2

3

1

�+ 1

CK

CD
"1=3k

�4=3
0

=
2

9

1

�+ 1
(CKCD)

�1K
2

"
(93)

The transport coe�cient �ss describes the convection of a passive scalar, and is therefore

of order M0
t where the turbulent Mach number is Mt = K1=2=c.

The coe�cient �pp is evaluated from Eq. (73) as

�pp =
2

3

Z
1

0

dk

Z
1

0

d�Gpp(k; � )E(k)exp(��� )

�
1

c2

Z
1

0

dk

Z
1

0

d�f
2

3
Gww(k; � ) +

1

3
G��(k; � )gEp(k)exp(��P �� )

=

Z
1

0

dk
2

3
(�� + 1)

�

c2k2
E(k)�

1

c2
2

3

1

�P + �w

Ep(k)

�(k)

= [
1

3
(�� + 1)CKCD �

1

3

1

�P + �w

CB

CD
]
"

c2
k�20

=
8

81
C�3

K [(�� + 1)CKCD �
1

�P + �w

CB

CD
]M2

t

K2

"
(94)

This evaluation is correct to lowest order inMt; including the contribution fromG�� would,

in view of Eq. (86), lead to corrections of order M4
t . Di�usion of pressure is therefore an

O(M2
t ) phenomenon.

In evaluating � from Eq. (77), we will again compute to leading order in Mt. Thus,

� = 

Z
1

0

4�k3dk

Z
1

0

d� G�p(k; � )Qp(k; � )

= �

Z
1

0

dk
CB

2�0c2
"4=3k�7=3 +O(M4

t )

= �
< (p1)2 >

2�0c2
(95)

where Eq. (67) can be substituted for the total pressure variance so that

� � �KM2

t (96)
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For the bulk viscosity �uu, Eq. (77) implies

�uu =
1

3

Z
1

0

4�k2dk

Z
1

0

d�
2

3
Gww(k; � )Q(k; � )

� 

Z
4�k2dk

Z
1

0

d� Gpp(k; � )Qp(k; � ) (97)

Note that the negative contribution to Eq. (97) is of order c�2 compared to the �rst,

therefore it su�ces to evaluate the �rst term only. The result is

�uu =

Z
1

0

dk
2

9

1

�w + 1

E(k)

�(k)

=
1

6

1

�w + 1

CK

CD
"1=3k

�4=3
0

=
2

27

1

�w + 1
(CKCD)

�1K
2

"
(98)

Note the somewhat surprising conclusion that the bulk viscosity has anO(M0
t ) contribution

from the uctuating w �eld. The reason is that the decorrelation time of the w �eld appears

in the expressions for the transport coe�cients, not its amplitude, and that in the present

approximation for the response functions, w decorrelates like a passive vector. Although

the bulk viscosity does not vanish in the limit Mt ! 0, incompressibility is maintained

through the condition that r �U! 0.

Evaluating R̂ to leading order in Mt from Eq. (79),

1

R̂
=

Z
1

0

4�k2dk

Z
1

0

d� kG�p(k; � )Q(k; � )

= �
1

R

Z
1

0

dk c�2E(k)

= �
1

R
M2

t (99)

Combining the results of Eqs. (96) and (99) in the formula Eq. (80) for the e�ective speed

of mean ow sound waves,

C2 = c2[1 +M2
t ]

since �=c2 � M4
t according to Eq. (96). This result agrees up to the constant multiply-

ing M2
t with the prediction of Chandrasekhar22 for the speed of propagation of density

correlations.
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To summarize, by substituting the leading order terms in Mt from Eqs. (93)-(99) for

the transport coe�cients in Eqs. (70)-(72), we obtain the mean ow equations

@S

@t
+U � rS = r � (Cs

K2

"
rS)

@U

@t
+U � rU+

1

R
[1 +M2

t ]rP = r � f�
2

3
KI+ C�

K2

"
[rU+ (rU)T ]Sg

+r(Cu
K2

"
r �U) (100)

@P

@t
+U � rP + [1 + CM

4

t ]Pr �U = r � (CpM
2

t

K2

"
rP )

where the model constants Cs; C ; Cp; C� ; Cu are given by explicit integral expressions

containing the velocity inertial range constantsCK and CD and the incompressible pressure

inertial range constants CB and �P .

VI. Improved approximate system of equations

Eqs. (21)-(23) were derived by treating all incompressible pressure terms as perturba-

tions. This approximation lead to the decoupling of the entropy equation and consequently

to the simple partitioned structure Eq. (24) of the response matrix. If instead all of the

pressure terms in Eqs. (18)-(20) were treated non-perturbatively, the appearance of en-

tropy in the momentum equation would cause the response matrix computed by DIA to

be a completely �lled three by three block matrix. Even an approximate solution of the

corresponding response equations would be more di�cult.

However, the decoupling of entropy and the convenient matrix structure of Eq. (24)

can be retained by treating only the term coupling s and p1 as a perturbation. This

approximation is particularly reasonable since it is found in numerical simulations28 that

homogeneous compressible turbulence is nearly isentropic. With this approximation, the

response equations still have the form of Eq. (28), but the damping factors become

�uuij (k; t; r) = �

Z
k=p+q

dpdq �1imn(k;p;q)G
uu
np(q; t; r)�

1

prj (q;�p;k)Qmr(p; t; r)

+


c2R2

Z
k=p+q

dpdq pikjQ
p(p; t; r)Gpp(q; t; r)

�
up
i (k; t; r) = �

Z
k=p+q

dpdq �1imn(k;p;q)G
up
n (q; t; r)�2p(q;�p;k)Qmp(p; t; r)
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+
1

c2R2

Z
k=p+q

dpdq pipjG
pu
j (q; t; r)Qp(p; t; r)

�
pu
j (k; t; r) = �

Z
k=p+q

dpdq �2p(k;p;q)G
pu
n (q; t; r)�1nrj (q;�p;k)Qrp(p; t; r)

� 2
Z
k=p+q

dpdq qikjG
up
i (q; t; r)Qp(p; t; r)

�pp(k; t; r) = �

Z
k=p+q

dpdq �2p(k;p;q)G
pp(q; t; r)�2q (q;�p;k)Qpq(p; t; r)

�


c2R2

Z
k=p+q

dpdq qipjG
uu
ij (q; t; r)Q

p(p; t; r)

In this approximation, the incompressible pressure correlations appear in the expressions

for damping of the compressible �elds which take the form

G(k; � ) � exp[��(k)� +O(M2

t )]

The appearance of Mt in the response and time correlation functions is regularizing in the

sense that time integrals

Z
1

0

d� G(k; � )Q(k; � ) �
1

a+O(M2
t )

and the theory is therefore well behaved even if Mt becomes large. This provides a more

fundamental view of the role of pressure uctuations and is suggestive for generalization

of this theory to strong compressibility.

VII. Conclusions

TSDIA provides a systematic approach to the derivation of a transport model for

weakly compressible turbulence. The occurrence of di�usivities for entropy and pressure

and of shear and bulk viscosities acting on the mean ow are e�ects that could be antic-

ipated by analogy with incompressible turbulence modeling. However, by incorporating

the e�ects of wave motion into the description of compressible turbulence, we �nd Mach

number-dependent modi�cations of the speci�c heat ratio and the speed of sound. TSDIA

further predicts that terms dependent on gradients of turbulence quantities will appear in

the mean ow equations. At this point, we have only given a preliminary account of these

e�ects, but it is clear that they could not be predicted by other methods.
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Nonlinear e�ects, analogous to normal stress e�ects in simple shear ow, are also

accessible to TSDIA analysis. The lengthy analyses required to evaluate such e�ects can

be expedited by symbolic calculations.20 Other more straightforward extensions of this

analysis are to compressible heat transfer modeling, gravitational e�ects, and e�ects of

rotation on compressible turbulence. DIA and TSDIA provide a uni�ed framework in

which to analyze such coupled e�ects in a general and systematic manner.

Open issues include the accurate evaluation of turbulent gradient terms and the con-

sideration of the e�ects of compressibility on the two equation model. It is evident that

these e�ects will be of order M2
t , but they should be evaluated for potential extension of

this theory to strong compressibility.

APPENDIX I. Outline of the DIA theory of passive �elds coupled to incom-

pressible turbulence

Let a general system of uctuating �elds qi be coupled to incompressible turbulence

by equations of the form

_qi(k; t) +Ai
kq

k(k; t) +

Z
k=p+q

dpdq fB
i�
k (k;p;q)u1� (p; t)

+ Ci
k(k;p;q)p

1(p; t)gqk(q; t) +Ai
kq

k(k; t) = 0 (101)

where A represents linear couplings among the qi, B and C couple the qi to incompressible

turbulence, and A couples qi to external �elds. DIA closes all moments of the qi in terms

of the response matrix5

Gi
j = < �qi=�f j >

where f j is a small perturbation added to the right side of the equation for qj in Eq. (101).

DIA also provides a set of evolution equations for this matrix of the general form

_Gi
j(k; t; s) +Ai

kG
k
j (k; t; s) +Ai

kG
k
j (k; t; s)

+

Z t

0

dr �ip(k; t; r)G
p
j (k; r; s) = �ij�(t � s) (102)

in which the damping factors � are

�ip(k; t; s) =

Z
k=p+q

dpdq fB
i�
k (k;p;q)Bl�

p (q;�p;k)Gk
l (p; t; s)Q�� (q; t; s)

+ Ci
k(k;p;q)C

l
p(q;�p;k)G

k
l (p; t; s)Q

p(q; t; s)g
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Note that the damping factors � depend on the various couplings through their dependence

on the response functions.

Turbulence of the �elds qi generated by some external agency is described by the

inhomogeneous form of Eq. (101),

_qi(k; t) +Ai
kq

k(k; t) +

Z
k=p+q

dpdq fB
i�
k (k;p;q)u1� (p; t)qk(q; t)

+ Ci
k(k;p;q)p

1(p; t)qk(q; t) +Ai
kq

k(k; t) = F i(k; t) (103)

which has the formal solution

qi(k; t) =

Z t

0

ds Gi
j(k; t; s)F

j (k; s) (104)

It must be understood that Eq. (104) may only be applied to form correlations of the

uctuating �elds qi; DIA thus provides a statistical solution to Eq. (103), not a strict

pointwise solution. It can be noted that DIA is the �rst in a sequence of successively more

elaborate statistical approximations.29

Even the simplest equations of the general type of Eq. (102), such as the DIA equations

for shear ow,19 seem to defy analysis. A simpli�cationwhich makes some progress possible

is to treat the external �eld couplings perturbatively. Thus, rewrite Eq. (101) as

_qi +Ai
jq
j +B

ij
k u

1

j q
k +Ci

jp
1qj = �Ai

jq
j (105)

and treat the right side as a small forcing term. If the response matrix Gi
0j for the left

side of Eq. (105) can be evaluated, then it is possible to construct a formal perturbation

series in powers of A which satis�es Eq. (105): write

qi = qi0 + qi1 + � � � (106)

where qip is of order p inA, then substitute in Eq. (105). The solution of the inhomogeneous

system Eq. (103) is Eq. (106)with

qi0(k; t) =

Z t

0

ds Gi
0j(k; t; s)F

j (k; s)

qi1(k; t) =

Z t

0

ds Gi
0j(k; t; s)q

j
0(k; s)

� � �

qin(k; t) =

Z t

0

ds Gi
0j(k; t; s)q

j
n�1(k; s)
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A particular perturbation expansion of this form was proposed by Leslie19 to solve the

DIA shear ow equations. This expansion is essentially a Neumann series for the response

matrix in powers of A. TSDIA can also be understood in part as an expansion of this

type.

It may prove di�cult to evaluate the response matrix even from the left side of Eq.

(105). The di�culties are caused more by coupling terms like B and C than by A, which

can often be diagonalized. A simpli�cation which carries the procedure leading from Eq.

(101) to Eq. (105) one step further is to treat all couplings among the qi as perturbations.

This de�nes the diagonal approximation in which the response functions are evaluated from

the simpli�ed system

_qi +Ai
iq
i +B

ij
i u

1

j q
i + Ci

ip
1qi = 0 no sum on i

As before, the couplings can be reintroduced perturbatively; however, it will not be nec-

essary to write the expressions generated by this expansion explicitly. Note that any

combination of coupling terms can be treated perturbatively in this fashion.

Applied to the system Eq. (105), the diagonal approximation will conceal an inter-

esting physical property of compressible turbulence: the occurrence of wave motions. In

order to reveal these motions, it is necessary to �nd an approximation scheme intermedi-

ate in complexity between the diagonal approximation and the full system of governing

equations. The approximation represented by Eq. (28) and the approximation outlined in

Sect. VI both have this property.

APPENDIX II. List of correlations

A. < u1p >

� < u1i p > =

Z
dk

Z t

0

dr (107)

�
+Gpp(k; t; r) < u1i (�k; t)

@p1

@T
(k; r) > (a)

+Gpp(k; t; r) < u1i (�k; t)Up
@p1

@Xp
(k; r) > (b)

+Gpp(k; t; r) < u1i (�k; t)Upikpp
1(k; r) > (c)

+Gpp(k; t; r) < u1i (�k; t)u1j (k; r) >
@P

@Xj
(d)
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+Gpp(k; t; r) < u1i (�k; t)p1(k; r) >
@Up

@Xp
(e)

+Gpp(k; t; r) < u1i (�k; t)
@p1

@r
(k; r) > (f)

+Gpp(k; t; r)

Z
k=p+q

dpdq < u1i (�k; t)u1j (p; r)iqjp
1(q; r) > (g)

+Gpp(k; t; r)

Z
k=p+q

dpdq < u1i (�k; t)u1j (p; r)
@p1

@Xj
(q; r) > (h)

�G
pu
j (k; t; r)

1

c2R2

Z
k=p+q

dpdq < u1i (�k; r)p1(p; r)iqjp
1(q; r) > (i)

�G
pu
j (k; t; r)

1

c2R2

Z
k=p+q

dpdq < u1i (�k; r)p1(p; r)
@p1

@Xj

(q; r) > (j)

�G
pu
j (k; t; r)

1

c2R2
< u1i (�k; t)p1(k; r) >

@P

@Xj
(k)

+G
pu
j (k; t; r) < u1i (�k; t)u1m (k; r) >

� @Uj
@Xm

�C
g (l)

Several of these terms either vanish identically, or vanish to the present order of

approximation. As the same arguments will apply to all subsequent correlations, we give

the argument for each term.

Note �rst that G
pu
j should be replaced by the scalar Gp� using Eq. (31). The propor-

tionality of G
pu
j to kj causes several terms to vanish.

(a); (b) both vanish to this order: correlation < u1p1 > is zero in homogeneous turbu-

lence; a nonvanishing contribution will require one additional gradient in X;T leading to

a higher order term. This argument also applies to terms (e),(j),(k)

(c) vanishes identically on integration over k because it changes sign under k!�k. This

argument also shows that (l) vanishes.

(d) is a gradient transport contribution analyzed below.

(f) is a nonvanishing turbulence transport term discussed below. Other terms of this type

are (h) and (i).

(g) vanishes since it is changes sign under the simultaneous transformation of wavevectors

p ! �p, q ! �q, k ! �k. This transformation is admissible because it preserves the

triangle condition k = p+ q.
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The nonvanishing terms are (d); (f); (h); (i). Of these terms, (d) contains a mean ow

gradient, and (f); (h); (i) will depend on gradients of turbulence quantities. Note that

although (f) vanishes to lowest order, it is possible that it makes a nonvanishing contribu-

tion at higher order in TSDIA. The resolution of this issue is left to further research. The

terms (h); (i) are triangle integral terms of a type also discussed by Yoshizawa.1

B. < uip
1 >

� < uip
1 > =

Z
dk

Z t

0

dr (108)

�
+G

up
i (k; t; r) < p1(�k; t)

@p1

@T
(k; r) > (a)

+G
up
i (k; t; r) < p1(�k; t)Uj

@p1

@Xj
(k; r) > (b)

+G
up
i (k; t; r) < p1(�k; t)Ujikjp

1(k; r) > (c)

+G
up
i (k; t; r) < p1(�k; t)u1j (k; r) >

@P

@Xj
(d)

+Gup
i (k; t; r) < p1(�k; t)p1(k; r) >

@Uj

@Xj

(e)

+G
up
i (k; t; r) < p1(�k; t)

@p1

@r
(k; r) > (f)

+G
up
i (k; t; r)

Z
k=p+q

dpdq < p1(�k; t)u1j (p; r)
@p1

@Xj
(q; r) > (g)

+G
up
i (k; t; r)

Z
k=p+q

dpdq < p1(�k; t)u1j (p; r)iqjp
1(q; r) > (h)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq < p1(�k; t)p1(p; r)iqjp
1(q; r) > (i)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq < p1(�k; t)p1(p; r)
@p1

@Xj
(q; r) > (j)

�Guu
ij (k; t; r)

1

c2R2
< p1(�k; t)p1(k; r) >

@P

@Xj
(k)

+Guu
ij (k; t; r) < p1(�k; t)u1p (k; r) >

� @Uj
@Xp

�C
g (l)

Arguments like those used in case A show that the nonvanishing terms are (c); (h); (j); (k).

Of these, only (k) depends explicitly on the mean ow.

C. < u � rp1 >

It will be convenient to separate the terms containing iki and the terms containing

@=@Xi, which will be denoted by the subscripts x and X respectively. This gives for the
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terms containing iki,

� < u � rxp
1 >=

Z
dk

Z t

0

dr (109)

f+G
up
i (k; t; r) < �ikip

1(�k; t)
@p1

@T
(k; r) > (a)

+G
up
i (k; t; r) < �ikip

1(�k; t)Uj
@p1

@Xj
(k; r) > (b)

+G
up
i (k; t; r) < �ikip

1(�k; t)Uj ikjp
1(k; r) > (c)

+G
up
i (k; t; r) < �ikip

1(�k; t)u1j (k; r) >
@P

@Xj
(d)

+G
up
i (k; t; r) < �ikip

1(�k; t)p1(k; r) >
@Uj

@Xj

(e)

+G
up
i (k; t; r) < �ikip

1(�k; t)
@p1

@r
(k; r) > (f)

+G
up
i (k; t; r)

Z
k=p+q

dpdq < �ikip
1(�k; t)u1j (p; r)

@p1

@Xj

(q; r) > (g)

+G
up
i (k; t; r)

Z
k=p+q

dpdq < �ikip
1(�k; t)u1j (p; r)iqjp

1(q; r) > (h)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq < �ikip
1(�k; t)p1(p; r)iqjp

1(q; r) > (i)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq < �ikip
1(�k; t)p1(p; r)

@p1

@Xj
(q; r) > (j)

�Guu
ij (k; t; r)

1

c2R2
< �ikip

1(�k; t)p1(k; r) >
@P

@Xj
(k)

+Guu
ij (k; t; r) < �ikip

1(�k; t)u1p (k; r) >
� @Uj
@Xp

�C
g (l)

The nonvanishing correlations are (a); (b); (e); (f ); (g); (j). Of these, only (e) depends

explicitly on the mean ow.

The terms corresponding to those of Eq. (109) in which iki is replaced by @=@Xi are

� < u � rXp
1 >=

Z
dk

Z t

0

dr (110)

f+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)

@p1

@T
(k; r) > (a)

+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)Uj

@p1

@Xj
(k; r) > (b)

+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)Uj ikjp

1(k; r) > (c)
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+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)u1j (k; r) >

@P

@Xj
(d)

+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)p1(k; r) >

@Uj

@Xj
(e)

+G
up
i (k; t; r) <

@p1

@Xi
(�k; t)

@p1

@r
(k; r) > (f)

+G
up
i (k; t; r)

Z
k=p+q

dpdq <
@p1

@Xi

(�k; t)u1j (p; r)
@p1

@Xj

(q; r) > (g)

+G
up
i (k; t; r)

Z
k=p+q

dpdq <
@p1

@Xi
(�k; t)u1j (p; r)iqjp

1(q; r) > (h)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq <
@p1

@Xi
(�k; t)p1(p; r)iqjp

1(q; r) > (i)

�Guu
ij (k; t; r)

1

c2R2

Z
k=p+q

dpdq <
@p1

@Xi
(�k; t)p1(p; r)

@p1

@Xj
(q; r) > (j)

�Guu
ij (k; t; r)

1

c2R2
<

@p1

@Xi
(�k; t)p1(k; r) >

@P

@Xj
(k)

+Guu
ij (k; t; r) <

@p1

@Xi
(�k; t)u1p (k; r) >

� @Uj
@Xp

�C
g (l)

In determining which terms are to be retained, it must be noted that, unlike previous cor-

relations, there is no leading derivative with respect to X. Therefore, terms containing up

to two derivatives with respect to X and T must be retained. Therefore, the nonvanishing

terms are (c); (h); (j); (k).

D. < u1u >

� < u1i uj >=

Z
dk

Z t

0

dr (111)

f �Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq < u1i (�k; t)p1(p; r)iqmp
1(q; r) > (a)

�Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq < u1i (�k; t)p1(p; r)
@p1

@Xm
(q; r) > (b)

�Guu
jm(k; t; r)

1

c2R2
< u1i (�k; t)p1(k; r) >

@P

@Xm
(c)

+Guu
jm(k; t; r) < u1i (�k; t)u1p (k; r) >

�@Um
@Xp

�C
(d)

+G
up
j (k; t; r) < u1i (�k; t)

@p1

@T
(k; r) > (e)

+G
up
j (k; t; r) < u1i (�k; t)Up

@p1

@Xp
(k; r) > (f)
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+G
up
j (k; t; r) < u1i (�k; t)Upikpp

1(k; r) > (g)

+G
up
j (k; t; r) < u1i (�k; t)u1m (k; r) >

@P

@Xm
(h)

+G
up
j (k; t; r) < u1i (�k; t)p1(k; r) >

@Up

@Xp
(i)

+G
up
j (k; t; r) < u1i (�k; t)

@p1

@r
(k; r) > (j)

+G
up
j (k; t; r)

Z
k=p+q

dpdq < u1i (�k; t)u1m (p; r)iqmp
1(q; r) > (k)

+G
up
j (k; t; r)

Z
k=p+q

dpdq < u1i (�k; t)u1m (p; r)
@p1

@Xm

(q; r) >g (l)

The nonvanishing terms are (b); (d); (g); (k). Of these, only (d) depends explicitly on the

mean ow.

E. < u � ru1 >

Again writing the terms in ikj and @=@Xj separately, denoting them respectively by

subscripts x and X, the terms in ikj are

� <(u � rxu
1)i >=

Z
dk

Z t

0

dr (112)

f �Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq < �ikju
1

i (�k; t)p1(p; r)iqmp
1(q; r) > (a)

�Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq < �ikju
1

i (�k; t)p1(p; r)
@p1

@Xm
(q; r) > (b)

�Guu
jm(k; t; r)

1

c2R2
< �ikju

1

i (�k; t)p1(k; r) >
@P

@Xm
(c)

+Guu
jm(k; t; r) < �ikju

1

i (�k; t)u1p (k; r) >
�@Um
@Xp

�C
(d)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)
@p1

@T
(k; r) > (e)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)Up
@p1

@Xp
(k; r) > (f)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)Upikpp
1(k; r) > (g)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)u1m (k; r) >
@P

@Xm
(h)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)p1(k; r) >
@Up

@Xp
(i)

+G
up
j (k; t; r) < �ikju

1

i (�k; t)
@p1

@r
(k; r) > (j)
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+G
up
j (k; t; r)

Z
k=p+q

dpdq < �ikju
1

i (�k; t)u1m (p; r)iqmp
1(q; r) > (k)

+G
up
j (k; t; r)

Z
k=p+q

dpdq < �ikju
1

i (�k; t)u1m (p; r)
@p1

@Xm
(q; r) >g (l)

The nonvanishing terms are (a); (e); (f); (h); (i); (j); (l). Of these, (h) depends explicitly

on the mean �eld.

The terms dependent on @=@Xj are

� <(u � rXu
1)ij >= �

Z
dk

Z t

0

dr (113)

f �Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq <
@u1i
@Xj

(�k; t)p1(p; r)iqmp
1(q; r) > (a)

�Guu
jm(k; t; r)

1

c2R2

Z
k=p+q

dpdq <
@u1i
@Xj

(�k; t)p1(p; r)
@p1

@Xm
(q; r) > (b)

�Guu
jm(k; t; r)

1

c2R2
<
@u1i
@Xj

(�k; t)p1(k; r) >
@P

@Xm
(c)

+Guu
jm(k; t; r) <

@u1i
@Xj

(�k; t)u1p (k; r) >
�@Um
@Xp

�C
(d)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)
@p1

@T
(k; r) > (e)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)Up
@p1

@Xp
(k; r) > (f)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)Upikpp
1(k; r) > (g)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)u1m (k; r) >
@P

@Xm
(h)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)p1(k; r) >
@Up

@Xp

(i)

+G
up
j (k; t; r) <

@u1i
@Xj

(�k; t)
@p1

@r
(k; t) > (j)

+G
up
j (k; t; r)

Z
k=p+q

dpdq <
@u1i
@Xj

(�k; t)u1m (p; r)iqmp
1(q; r) > (k)

+G
up
j (k; t; r)

Z
k=p+q

dpdq <
@u1i
@Xj

(�k; t)u1m (p; r)
@p1

@Xm
(q; r) >g (l)

Again note the action of @=@Xj on u1i (�k) only. The nonvanishing terms are

(b); (d); (g); (k). Of these, (d) depends explicitly on the mean �eld.
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F. < pp1 >

� < pp1 > =

Z
dk

Z t

0

dr (114)

f+Gpp(k; t; r) < p1(�k; t)
@p1

@T
(k; r) > (a)

+Gpp(k; t; r) < p1(�k; t)Uj
@p1

@Xj
(k; r) > (b)

+Gpp(k; t; r) < p1(�k; t)Uj ikjp
1(k; r) > (c)

+Gpp(k; t; r) < p1(�k; t)u1j (k; r) >
@P

@Xj

(d)

+Gpp(k; t; r) < p1(�k; t)p1(k; r) >
@Uj

@Xj
(e)

+Gpp(k; t; r) < p1(�k; t)
@p1

@r
(k; r) > (f)

+Gpp(k; t; r)

Z
k=p+q

dpdq < p1(�k; t)u1j (p; r)
@p1

@Xj
(q; r) > (g)

+Gpp(k; t; r)

Z
k=p+q

dpdq < p1(�k; t)u1j (p; r)iqjp
1(q; r) > (h)

�G
pu
j (k; t; r)

1

c2R2

Z
k=p+q

dpdq < p1(�k; t)p1(p; r)iqjp
1(q; r) > (i)

�G
pu
j (k; t; r)

1

c2R2

Z
k=p+q

dpdq < p1(�k; t)p1(p; r)
@p1

@Xj
(q; r) > (j)

�G
pu
j (k; t; r)

1

c2R2
< p1(�k; t)p1(k; r) >

@P

@Xj
(k)

+G
pu
j (k; t; r) < p1(�k; t)u1p (k; r) >

� @Uj
@Xp

�C
g (l)

The nonvanishing terms are (a); (b); (e); (f); (g); (j). Of these, (e) depends explicitly on

the mean �elds.

Appendix III. Approximate evaluation of turbulent correlation terms

The evaluation of correlations which depend on gradients of turbulence quantities in

Eqs. (108)-(112) is more elaborate. In general, it is necessary to replace p1 by u1 using

the Poisson equation and apply the quasinormal hypothesis to close the resulting moments

of the velocity �eld. Provided that the integrals converge, it is possible to determine in

advance at least the structure of the resulting single point moments. Since it will be useful

to have a preliminary indication of the type of model which results, the form of these terms
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will be derived here, limiting attention to those terms which can be evaluated at the lowest

order in TSDIA. Shimomura's result Eq. (52) is obtained by such higher order analysis,

and reference can be made to Ref. 20 for the required procedure.

A. Terms added to mean pressure equation

Moments from Eq. (107):

(f) vanishes to lowest order since there are no isotropic functions of u1.

(h) � O(r;K4; "�1; c�2) where the notation indicates only the total power of each factor

in the result.

(i) vanishes to lowest order since it is of odd order in u1.

Moments from Eq. (108):

(c) vanishes to lowest order since there is no isotropic invariant of U.

(h) vanishes like Eq. (107f).

(j) � O(r; c�2;K4; "�1)

Moments from Eq. (109):

(a); (b) � O(D=DT;K5=2 ; c�2)

(f) vanishes to lowest order

(g) � O(r; c�2;K4; "�1)

(i) � K"c�2

Moments from Eq. (110):

(c) vanishes to lowest order since there is no isotropic invariant of U.

(h) vanishes to lowest order

(j) � O(r2;K4; "�1; c�2)

Term (k) is of a special type since it contains a mean velocity gradient, but its coe�-

cient depends on gradients of turbulence quantities. The structure of this term is

(k) � [O(r;K3; "�1; c�2)]rP .

The mean pressure equation, with these e�ects added, has the form

@P

@t
+U � rP + Pr �U = r � (�pprP )� ( � 1)�r �U

C1c
�2K"+ C2O(

D

DT
") + C3O(r;r;K

4"�1c�2)
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where the constants C1; C2; C3 can be evaluated theoretically by evaluating the relevant

integrals. The term containing a convective derivative occurs in the higher order TSDIA

analysis of incompressible turbulence.

B. Terms added to mean velocity equation

Moments from Eq. (111):

(b) vanishes to lowest order

(g) vanishes to lowest order

(k) � K2c�2

Moments from Eq. (112):

(a) vanishes to lowest order.

(e) vanishes to lowest order.

(f) vanishes to lowest order.

(i) vanishes to lowest order.

(j) � K1=2"c�2

(l) � O(r;K2; c�2)

Moments from Eq. (113):

(b) vanishes to lowest order.

(g) vanishes to lowest order.

(k) � O(r;K2; c�2)

Term (d), like (110k) depends on mean velocity gradients. It has the form

(d) � [O(r;K2; "�1)]r �U

Moments from Eq. (114):

(a); (b) � D=DT (K4"�1c�2)

(f) vanishes to lowest order.

(g) vanishes to lowest order.

(j) � O(r;K9=2; "�1; c�2)

Note that this group of terms appears with an additional factor of c�2 and are therefore

of higher order in Mt.
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These terms modify the mean velocity equation as follows:

@U

@t
+U � rU+

1

R
rP = r � f�

2

3
KI+ �[rU+ (rU)T ]S

+r(�uur �U) +
1

R̂
rP

+ C4rK
1=2"c�2 + C5O(r

2;K2; c�2) + C6O(r;K
2; "�1)r � U

As before, the constants C4; C5; C6 are obtained by evaluating the relevant integrals.
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